Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
bioRxiv ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38712189

ABSTRACT

Keyboard typing with finger movements is a versatile digital interface for users with diverse skills, needs, and preferences. Currently, such an interface does not exist for people with paralysis. We developed an intracortical brain-computer interface (BCI) for typing with attempted flexion/extension movements of three finger groups on the right hand, or both hands, and demonstrated its flexibility in two dominant typing paradigms. The first paradigm is "point-and-click" typing, where a BCI user selects one key at a time using continuous real-time control, allowing selection of arbitrary sequences of symbols. During cued character selection with this paradigm, a human research participant with paralysis achieved 30-40 selections per minute with nearly 90% accuracy. The second paradigm is "keystroke" typing, where the BCI user selects each character by a discrete movement without real-time feedback, often giving a faster speed for natural language sentences. With 90 cued characters per minute, decoding attempted finger movements and correcting errors using a language model resulted in more than 90% accuracy. Notably, both paradigms matched the state-of-the-art for BCI performance and enabled further flexibility by the simultaneous selection of multiple characters as well as efficient decoder estimation across paradigms. Overall, the high-performance interface is a step towards the wider accessibility of BCI technology by addressing unmet user needs for flexibility.

2.
J Neural Eng ; 21(2)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38579696

ABSTRACT

Objective.Artificial neural networks (ANNs) are state-of-the-art tools for modeling and decoding neural activity, but deploying them in closed-loop experiments with tight timing constraints is challenging due to their limited support in existing real-time frameworks. Researchers need a platform that fully supports high-level languages for running ANNs (e.g. Python and Julia) while maintaining support for languages that are critical for low-latency data acquisition and processing (e.g. C and C++).Approach.To address these needs, we introduce the Backend for Realtime Asynchronous Neural Decoding (BRAND). BRAND comprises Linux processes, termednodes, which communicate with each other in agraphvia streams of data. Its asynchronous design allows for acquisition, control, and analysis to be executed in parallel on streams of data that may operate at different timescales. BRAND uses Redis, an in-memory database, to send data between nodes, which enables fast inter-process communication and supports 54 different programming languages. Thus, developers can easily deploy existing ANN models in BRAND with minimal implementation changes.Main results.In our tests, BRAND achieved <600 microsecond latency between processes when sending large quantities of data (1024 channels of 30 kHz neural data in 1 ms chunks). BRAND runs a brain-computer interface with a recurrent neural network (RNN) decoder with less than 8 ms of latency from neural data input to decoder prediction. In a real-world demonstration of the system, participant T11 in the BrainGate2 clinical trial (ClinicalTrials.gov Identifier: NCT00912041) performed a standard cursor control task, in which 30 kHz signal processing, RNN decoding, task control, and graphics were all executed in BRAND. This system also supports real-time inference with complex latent variable models like Latent Factor Analysis via Dynamical Systems.Significance.By providing a framework that is fast, modular, and language-agnostic, BRAND lowers the barriers to integrating the latest tools in neuroscience and machine learning into closed-loop experiments.


Subject(s)
Brain-Computer Interfaces , Neurosciences , Humans , Neural Networks, Computer
3.
medRxiv ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38645254

ABSTRACT

Brain-computer interfaces can enable rapid, intuitive communication for people with paralysis by transforming the cortical activity associated with attempted speech into text on a computer screen. Despite recent advances, communication with brain-computer interfaces has been restricted by extensive training data requirements and inaccurate word output. A man in his 40's with ALS with tetraparesis and severe dysarthria (ALSFRS-R = 23) was enrolled into the BrainGate2 clinical trial. He underwent surgical implantation of four microelectrode arrays into his left precentral gyrus, which recorded neural activity from 256 intracortical electrodes. We report a speech neuroprosthesis that decoded his neural activity as he attempted to speak in both prompted and unstructured conversational settings. Decoded words were displayed on a screen, then vocalized using text-to-speech software designed to sound like his pre-ALS voice. On the first day of system use, following 30 minutes of attempted speech training data, the neuroprosthesis achieved 99.6% accuracy with a 50-word vocabulary. On the second day, the size of the possible output vocabulary increased to 125,000 words, and, after 1.4 additional hours of training data, the neuroprosthesis achieved 90.2% accuracy. With further training data, the neuroprosthesis sustained 97.5% accuracy beyond eight months after surgical implantation. The participant has used the neuroprosthesis to communicate in self-paced conversations for over 248 hours. In an individual with ALS and severe dysarthria, an intracortical speech neuroprosthesis reached a level of performance suitable to restore naturalistic communication after a brief training period.

4.
bioRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496552

ABSTRACT

Intracortical brain-computer interfaces (iBCIs) enable people with tetraplegia to gain intuitive cursor control from movement intentions. To translate to practical use, iBCIs should provide reliable performance for extended periods of time. However, performance begins to degrade as the relationship between kinematic intention and recorded neural activity shifts compared to when the decoder was initially trained. In addition to developing decoders to better handle long-term instability, identifying when to recalibrate will also optimize performance. We propose a method to measure instability in neural data without needing to label user intentions. Longitudinal data were analyzed from two BrainGate2 participants with tetraplegia as they used fixed decoders to control a computer cursor spanning 142 days and 28 days, respectively. We demonstrate a measure of instability that correlates with changes in closed-loop cursor performance solely based on the recorded neural activity (Pearson r = 0.93 and 0.72, respectively). This result suggests a strategy to infer online iBCI performance from neural data alone and to determine when recalibration should take place for practical long-term use.

5.
bioRxiv ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38370697

ABSTRACT

People with paralysis express unmet needs for peer support, leisure activities, and sporting activities. Many within the general population rely on social media and massively multiplayer video games to address these needs. We developed a high-performance finger brain-computer-interface system allowing continuous control of 3 independent finger groups with 2D thumb movements. The system was tested in a human research participant over sequential trials requiring fingers to reach and hold on targets, with an average acquisition rate of 76 targets/minute and completion time of 1.58 ± 0.06 seconds. Performance compared favorably to previous animal studies, despite a 2-fold increase in the decoded degrees-of-freedom (DOF). Finger positions were then used for 4-DOF velocity control of a virtual quadcopter, demonstrating functionality over both fixed and random obstacle courses. This approach shows promise for controlling multiple-DOF end-effectors, such as robotic fingers or digital interfaces for work, entertainment, and socialization.

6.
Sci Rep ; 14(1): 1598, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38238386

ABSTRACT

Brain-computer interfaces have so far focused largely on enabling the control of a single effector, for example a single computer cursor or robotic arm. Restoring multi-effector motion could unlock greater functionality for people with paralysis (e.g., bimanual movement). However, it may prove challenging to decode the simultaneous motion of multiple effectors, as we recently found that a compositional neural code links movements across all limbs and that neural tuning changes nonlinearly during dual-effector motion. Here, we demonstrate the feasibility of high-quality bimanual control of two cursors via neural network (NN) decoders. Through simulations, we show that NNs leverage a neural 'laterality' dimension to distinguish between left and right-hand movements as neural tuning to both hands become increasingly correlated. In training recurrent neural networks (RNNs) for two-cursor control, we developed a method that alters the temporal structure of the training data by dilating/compressing it in time and re-ordering it, which we show helps RNNs successfully generalize to the online setting. With this method, we demonstrate that a person with paralysis can control two computer cursors simultaneously. Our results suggest that neural network decoders may be advantageous for multi-effector decoding, provided they are designed to transfer to the online setting.


Subject(s)
Brain-Computer Interfaces , Neural Networks, Computer , Humans , Movement , Functional Laterality , Hand , Paralysis , Brain
7.
Neurocrit Care ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38286946

ABSTRACT

BACKGROUND: We developed a gap analysis that examines the role of brain-computer interfaces (BCI) in patients with disorders of consciousness (DoC), focusing on their assessment, establishment of communication, and engagement with their environment. METHODS: The Curing Coma Campaign convened a Coma Science work group that included 16 clinicians and neuroscientists with expertise in DoC. The work group met online biweekly and performed a gap analysis of the primary question. RESULTS: We outline a roadmap for assessing BCI readiness in patients with DoC and for advancing the use of BCI devices in patients with DoC. Additionally, we discuss preliminary studies that inform development of BCI solutions for communication and assessment of readiness for use of BCIs in DoC study participants. Special emphasis is placed on the challenges posed by the complex pathophysiologies caused by heterogeneous brain injuries and their impact on neuronal signaling. The differences between one-way and two-way communication are specifically considered. Possible implanted and noninvasive BCI solutions for acute and chronic DoC in adult and pediatric populations are also addressed. CONCLUSIONS: We identify clinical and technical gaps hindering the use of BCI in patients with DoC in each of these contexts and provide a roadmap for research aimed at improving communication for adults and children with DoC, spanning the clinical spectrum from intensive care unit to chronic care.

8.
Proc Natl Acad Sci U S A ; 121(1): e2312204121, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38157452

ABSTRACT

How the human cortex integrates ("binds") information encoded by spatially distributed neurons remains largely unknown. One hypothesis suggests that synchronous bursts of high-frequency oscillations ("ripples") contribute to binding by facilitating integration of neuronal firing across different cortical locations. While studies have demonstrated that ripples modulate local activity in the cortex, it is not known whether their co-occurrence coordinates neural firing across larger distances. We tested this hypothesis using local field-potentials and single-unit firing from four 96-channel microelectrode arrays in the supragranular cortex of 3 patients. Neurons in co-rippling locations showed increased short-latency co-firing, prediction of each other's firing, and co-participation in neural assemblies. Effects were similar for putative pyramidal and interneurons, during non-rapid eye movement sleep and waking, in temporal and Rolandic cortices, and at distances up to 16 mm (the longest tested). Increased co-prediction during co-ripples was maintained when firing-rate changes were equated, indicating that it was not secondary to non-oscillatory activation. Co-rippling enhanced prediction was strongly modulated by ripple phase, supporting the most common posited mechanism for binding-by-synchrony. Co-ripple enhanced prediction is reciprocal, synergistic with local upstates, and further enhanced when multiple sites co-ripple, supporting re-entrant facilitation. Together, these results support the hypothesis that trans-cortical co-occurring ripples increase the integration of neuronal firing of neurons in different cortical locations and do so in part through phase-modulation rather than unstructured activation.


Subject(s)
Interneurons , Neurons , Humans , Hippocampus/physiology
9.
Nat Protoc ; 18(10): 2927-2953, 2023 10.
Article in English | MEDLINE | ID: mdl-37697108

ABSTRACT

Neuropixels are silicon-based electrophysiology-recording probes with high channel count and recording-site density. These probes offer a turnkey platform for measuring neural activity with single-cell resolution and at a scale that is beyond the capabilities of current clinically approved devices. Our team demonstrated the first-in-human use of these probes during resection surgery for epilepsy or tumors and deep brain stimulation electrode placement in patients with Parkinson's disease. Here, we provide a better understanding of the capabilities and challenges of using Neuropixels as a research tool to study human neurophysiology, with the hope that this information may inform future efforts toward regulatory approval of Neuropixels probes as research devices. In perioperative procedures, the major concerns are the initial sterility of the device, maintaining a sterile field during surgery, having multiple referencing and grounding schemes available to de-noise recordings (if necessary), protecting the silicon probe from accidental contact before insertion and obtaining high-quality action potential and local field potential recordings. The research team ensures that the device is fully operational while coordinating with the surgical team to remove sources of electrical noise that could otherwise substantially affect the signals recorded by the sensitive hardware. Prior preparation using the equipment and training in human clinical research and working in operating rooms maximize effective communication within and between the teams, ensuring high recording quality and minimizing the time added to the surgery. The perioperative procedure requires ~4 h, and the entire protocol requires multiple weeks.


Subject(s)
Operating Rooms , Silicon , Humans , Electrodes , Neurophysiology , Action Potentials/physiology , Electrodes, Implanted
10.
bioRxiv ; 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37609167

ABSTRACT

Artificial neural networks (ANNs) are state-of-the-art tools for modeling and decoding neural activity, but deploying them in closed-loop experiments with tight timing constraints is challenging due to their limited support in existing real-time frameworks. Researchers need a platform that fully supports high-level languages for running ANNs (e.g., Python and Julia) while maintaining support for languages that are critical for low-latency data acquisition and processing (e.g., C and C++). To address these needs, we introduce the Backend for Realtime Asynchronous Neural Decoding (BRAND). BRAND comprises Linux processes, termed nodes , which communicate with each other in a graph via streams of data. Its asynchronous design allows for acquisition, control, and analysis to be executed in parallel on streams of data that may operate at different timescales. BRAND uses Redis to send data between nodes, which enables fast inter-process communication and supports 54 different programming languages. Thus, developers can easily deploy existing ANN models in BRAND with minimal implementation changes. In our tests, BRAND achieved <600 microsecond latency between processes when sending large quantities of data (1024 channels of 30 kHz neural data in 1-millisecond chunks). BRAND runs a brain-computer interface with a recurrent neural network (RNN) decoder with less than 8 milliseconds of latency from neural data input to decoder prediction. In a real-world demonstration of the system, participant T11 in the BrainGate2 clinical trial performed a standard cursor control task, in which 30 kHz signal processing, RNN decoding, task control, and graphics were all executed in BRAND. This system also supports real-time inference with complex latent variable models like Latent Factor Analysis via Dynamical Systems. By providing a framework that is fast, modular, and language-agnostic, BRAND lowers the barriers to integrating the latest tools in neuroscience and machine learning into closed-loop experiments.

11.
Nature ; 620(7976): 1031-1036, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37612500

ABSTRACT

Speech brain-computer interfaces (BCIs) have the potential to restore rapid communication to people with paralysis by decoding neural activity evoked by attempted speech into text1,2 or sound3,4. Early demonstrations, although promising, have not yet achieved accuracies sufficiently high for communication of unconstrained sentences from a large vocabulary1-7. Here we demonstrate a speech-to-text BCI that records spiking activity from intracortical microelectrode arrays. Enabled by these high-resolution recordings, our study participant-who can no longer speak intelligibly owing to amyotrophic lateral sclerosis-achieved a 9.1% word error rate on a 50-word vocabulary (2.7 times fewer errors than the previous state-of-the-art speech BCI2) and a 23.8% word error rate on a 125,000-word vocabulary (the first successful demonstration, to our knowledge, of large-vocabulary decoding). Our participant's attempted speech was decoded  at 62 words per minute, which is 3.4 times as fast as the previous record8 and begins to approach the speed of natural conversation (160 words per minute9). Finally, we highlight two aspects of the neural code for speech that are encouraging for speech BCIs: spatially intermixed tuning to speech articulators that makes accurate decoding possible from only a small region of cortex, and a detailed articulatory representation of phonemes that persists years after paralysis. These results show a feasible path forward for restoring rapid communication to people with paralysis who can no longer speak.


Subject(s)
Brain-Computer Interfaces , Neural Prostheses , Paralysis , Speech , Humans , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/rehabilitation , Cerebral Cortex/physiology , Microelectrodes , Paralysis/physiopathology , Paralysis/rehabilitation , Vocabulary
12.
Article in English | MEDLINE | ID: mdl-37465143

ABSTRACT

Intracortical brain computer interfaces (iBCIs) decode neural activity from the cortex and enable motor and communication prostheses, such as cursor control, handwriting and speech, for people with paralysis. This paper introduces a new iBCI communication prosthesis using a 3D keyboard interface for typing using continuous, closed loop movement of multiple fingers. A participant-specific BCI keyboard prototype was developed for a BrainGate2 clinical trial participant (T5) using neural recordings from the hand-knob area of the left premotor cortex. We assessed the relative decoding accuracy of flexion/extension movements of individual single fingers (5 degrees of freedom (DOF)) vs. three groups of fingers (thumb, index-middle, and ring-small fingers, 3 DOF). Neural decoding using 3 independent DOF was more accurate (95%) than that using 5 DOF (76%). A virtual keyboard was then developed where each finger group moved along a flexion-extension arc to acquire targets that corresponded to English letters and symbols. The locations of these letter/symbols were optimized using natural language statistics, resulting in an approximately a 2× reduction in distance traveled by fingers on average compared to a random keyboard layout. This keyboard was tested using a simple real-time closed loop decoder enabling T5 to type with 31 symbols at 90% accuracy and approximately 2.3 sec/symbol (excluding a 2 second hold time) on average.

13.
bioRxiv ; 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37292943

ABSTRACT

Synchronous bursts of high frequency oscillations ('ripples') are hypothesized to contribute to binding by facilitating integration of neuronal firing across cortical locations. We tested this hypothesis using local field-potentials and single-unit firing from four 96-channel microelectrode arrays in supragranular cortex of 3 patients. Neurons in co-rippling locations showed increased short-latency co-firing, prediction of each-other's firing, and co-participation in neural assemblies. Effects were similar for putative pyramidal and interneurons, during NREM sleep and waking, in temporal and Rolandic cortices, and at distances up to 16mm. Increased co-prediction during co-ripples was maintained when firing-rate changes were equated, and were strongly modulated by ripple phase. Co-ripple enhanced prediction is reciprocal, synergistic with local upstates, and further enhanced when multiple sites co-ripple. Together, these results support the hypothesis that trans-cortical co-ripples increase the integration of neuronal firing of neurons in different cortical locations, and do so in part through phase-modulation rather than unstructured activation.

14.
Neurology ; 101(4): e347-e357, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37268437

ABSTRACT

BACKGROUND AND OBJECTIVES: The classic and singular pattern of distal greater than proximal upper extremity motor deficits after acute stroke does not account for the distinct structural and functional organization of circuits for proximal and distal motor control in the healthy CNS. We hypothesized that separate proximal and distal upper extremity clinical syndromes after acute stroke could be distinguished and that patterns of neuroanatomical injury leading to these 2 syndromes would reflect their distinct organization in the intact CNS. METHODS: Proximal and distal components of motor impairment (upper extremity Fugl-Meyer score) and strength (Shoulder Abduction Finger Extension score) were assessed in consecutively recruited patients within 7 days of acute stroke. Partial correlation analysis was used to assess the relationship between proximal and distal motor scores. Functional outcomes including the Box and Blocks Test (BBT), Barthel Index (BI), and modified Rankin scale (mRS) were examined in relation to proximal vs distal motor patterns of deficit. Voxel-based lesion-symptom mapping was used to identify regions of injury associated with proximal vs distal upper extremity motor deficits. RESULTS: A total of 141 consecutive patients (49% female) were assessed 4.0 ± 1.6 (mean ± SD) days after stroke onset. Separate proximal and distal upper extremity motor components were distinguishable after acute stroke (p = 0.002). A pattern of proximal more than distal injury (i.e., relatively preserved distal motor control) was not rare, observed in 23% of acute stroke patients. Patients with relatively preserved distal motor control, even after controlling for total extent of deficit, had better outcomes in the first week and at 90 days poststroke (BBT, ρ = 0.51, p < 0.001; BI, ρ = 0.41, p < 0.001; mRS, ρ = 0.38, p < 0.001). Deficits in proximal motor control were associated with widespread injury to subcortical white and gray matter, while deficits in distal motor control were associated with injury restricted to the posterior aspect of the precentral gyrus, consistent with the organization of proximal vs distal neural circuits in the healthy CNS. DISCUSSION: These results highlight that proximal and distal upper extremity motor systems can be selectively injured by acute stroke, with dissociable deficits and functional consequences. Our findings emphasize how disruption of distinct motor systems can contribute to separable components of poststroke upper extremity hemiparesis.


Subject(s)
Motor Cortex , Stroke Rehabilitation , Stroke , Humans , Female , Male , Recovery of Function , Stroke/complications , Upper Extremity/physiopathology , Stroke Rehabilitation/methods , Motor Cortex/physiopathology
15.
bioRxiv ; 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37131830

ABSTRACT

Advances in deep learning have given rise to neural network models of the relationship between movement and brain activity that appear to far outperform prior approaches. Brain-computer interfaces (BCIs) that enable people with paralysis to control external devices, such as robotic arms or computer cursors, might stand to benefit greatly from these advances. We tested recurrent neural networks (RNNs) on a challenging nonlinear BCI problem: decoding continuous bimanual movement of two computer cursors. Surprisingly, we found that although RNNs appeared to perform well in offline settings, they did so by overfitting to the temporal structure of the training data and failed to generalize to real-time neuroprosthetic control. In response, we developed a method that alters the temporal structure of the training data by dilating/compressing it in time and re-ordering it, which we show helps RNNs successfully generalize to the online setting. With this method, we demonstrate that a person with paralysis can control two computer cursors simultaneously, far outperforming standard linear methods. Our results provide evidence that preventing models from overfitting to temporal structure in training data may, in principle, aid in translating deep learning advances to the BCI setting, unlocking improved performance for challenging applications.

16.
bioRxiv ; 2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36778458

ABSTRACT

Intracortical brain-computer interfaces (iBCIs) require frequent recalibration to maintain robust performance due to changes in neural activity that accumulate over time. Compensating for this nonstationarity would enable consistently high performance without the need for supervised recalibration periods, where users cannot engage in free use of their device. Here we introduce a hidden Markov model (HMM) to infer what targets users are moving toward during iBCI use. We then retrain the system using these inferred targets, enabling unsupervised adaptation to changing neural activity. Our approach outperforms the state of the art in large-scale, closed-loop simulations over two months and in closed-loop with a human iBCI user over one month. Leveraging an offline dataset spanning five years of iBCI recordings, we further show how recently proposed data distribution-matching approaches to recalibration fail over long time scales; only target-inference methods appear capable of enabling long-term unsupervised recalibration. Our results demonstrate how task structure can be used to bootstrap a noisy decoder into a highly-performant one, thereby overcoming one of the major barriers to clinically translating BCIs.

17.
Neurology ; 100(11): e1177-e1192, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36639237

ABSTRACT

BACKGROUND AND OBJECTIVES: Brain-computer interfaces (BCIs) are being developed to restore mobility, communication, and functional independence to people with paralysis. Though supported by decades of preclinical data, the safety of chronically implanted microelectrode array BCIs in humans is unknown. We report safety results from the prospective, open-label, nonrandomized BrainGate feasibility study (NCT00912041), the largest and longest-running clinical trial of an implanted BCI. METHODS: Adults aged 18-75 years with quadriparesis from spinal cord injury, brainstem stroke, or motor neuron disease were enrolled through 7 clinical sites in the United States. Participants underwent surgical implantation of 1 or 2 microelectrode arrays in the motor cortex of the dominant cerebral hemisphere. The primary safety outcome was device-related serious adverse events (SAEs) requiring device explantation or resulting in death or permanently increased disability during the 1-year postimplant evaluation period. The secondary outcomes included the type and frequency of other adverse events and the feasibility of the BrainGate system for controlling a computer or other assistive technologies. RESULTS: From 2004 to 2021, 14 adults enrolled in the BrainGate trial had devices surgically implanted. The average duration of device implantation was 872 days, yielding 12,203 days of safety experience. There were 68 device-related adverse events, including 6 device-related SAEs. The most common device-related adverse event was skin irritation around the percutaneous pedestal. There were no safety events that required device explantation, no unanticipated adverse device events, no intracranial infections, and no participant deaths or adverse events resulting in permanently increased disability related to the investigational device. DISCUSSION: The BrainGate Neural Interface system has a safety record comparable with other chronically implanted medical devices. Given rapid recent advances in this technology and continued performance gains, these data suggest a favorable risk/benefit ratio in appropriately selected individuals to support ongoing research and development. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov Identifier: NCT00912041. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that the neurosurgically placed BrainGate Neural Interface system is associated with a low rate of SAEs defined as those requiring device explantation, resulting in death, or resulting in permanently increased disability during the 1-year postimplant period.


Subject(s)
Brain-Computer Interfaces , Spinal Cord Injuries , Adult , Humans , Feasibility Studies , Prospective Studies , Quadriplegia , Spinal Cord Injuries/surgery
18.
bioRxiv ; 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-36711591

ABSTRACT

Speech brain-computer interfaces (BCIs) have the potential to restore rapid communication to people with paralysis by decoding neural activity evoked by attempted speaking movements into text or sound. Early demonstrations, while promising, have not yet achieved accuracies high enough for communication of unconstrainted sentences from a large vocabulary. Here, we demonstrate the first speech-to-text BCI that records spiking activity from intracortical microelectrode arrays. Enabled by these high-resolution recordings, our study participant, who can no longer speak intelligibly due amyotrophic lateral sclerosis (ALS), achieved a 9.1% word error rate on a 50 word vocabulary (2.7 times fewer errors than the prior state of the art speech BCI2) and a 23.8% word error rate on a 125,000 word vocabulary (the first successful demonstration of large-vocabulary decoding). Our BCI decoded speech at 62 words per minute, which is 3.4 times faster than the prior record for any kind of BCI and begins to approach the speed of natural conversation (160 words per minute). Finally, we highlight two aspects of the neural code for speech that are encouraging for speech BCIs: spatially intermixed tuning to speech articulators that makes accurate decoding possible from only a small region of cortex, and a detailed articulatory representation of phonemes that persists years after paralysis. These results show a feasible path forward for using intracortical speech BCIs to restore rapid communication to people with paralysis who can no longer speak.

19.
J Neurosci ; 42(25): 5007-5020, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35589391

ABSTRACT

Consolidation of memory is believed to involve offline replay of neural activity. While amply demonstrated in rodents, evidence for replay in humans, particularly regarding motor memory, is less compelling. To determine whether replay occurs after motor learning, we sought to record from motor cortex during a novel motor task and subsequent overnight sleep. A 36-year-old man with tetraplegia secondary to cervical spinal cord injury enrolled in the ongoing BrainGate brain-computer interface pilot clinical trial had two 96-channel intracortical microelectrode arrays placed chronically into left precentral gyrus. Single- and multi-unit activity was recorded while he played a color/sound sequence matching memory game. Intended movements were decoded from motor cortical neuronal activity by a real-time steady-state Kalman filter that allowed the participant to control a neurally driven cursor on the screen. Intracortical neural activity from precentral gyrus and 2-lead scalp EEG were recorded overnight as he slept. When decoded using the same steady-state Kalman filter parameters, intracortical neural signals recorded overnight replayed the target sequence from the memory game at intervals throughout at a frequency significantly greater than expected by chance. Replay events occurred at speeds ranging from 1 to 4 times as fast as initial task execution and were most frequently observed during slow-wave sleep. These results demonstrate that recent visuomotor skill acquisition in humans may be accompanied by replay of the corresponding motor cortex neural activity during sleep.SIGNIFICANCE STATEMENT Within cortex, the acquisition of information is often followed by the offline recapitulation of specific sequences of neural firing. Replay of recent activity is enriched during sleep and may support the consolidation of learning and memory. Using an intracortical brain-computer interface, we recorded and decoded activity from motor cortex as a human research participant performed a novel motor task. By decoding neural activity throughout subsequent sleep, we find that neural sequences underlying the recently practiced motor task are repeated throughout the night, providing direct evidence of replay in human motor cortex during sleep. This approach, using an optimized brain-computer interface decoder to characterize neural activity during sleep, provides a framework for future studies exploring replay, learning, and memory.


Subject(s)
Learning/physiology , Motor Cortex/physiology , Sleep/physiology , Adult , Brain-Computer Interfaces , Cervical Vertebrae , Electroencephalography/methods , Humans , Male , Pilot Projects , Quadriplegia/etiology , Quadriplegia/physiopathology , Spinal Cord Injuries/complications , Spinal Cord Injuries/physiopathology
20.
Neurology ; 98(18): e1877-e1885, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35277444

ABSTRACT

BACKGROUND AND OBJECTIVES: Precise measurement of outcomes is essential for stroke trials and clinical care. Prior research has highlighted conceptual differences between global outcome measures such as the modified Rankin Scale (mRS) and domain-specific measures (e.g., motor, sensory, language or cognitive function). This study related motor phenotypes to the mRS, specifically aiming to determine whether mRS levels distinguish motor impairment and function phenotypes, and to compare mRS outcomes to meaningful changes in impairment and function from acute to subacute recovery after stroke. METHODS: Patients with upper extremity weakness after ischemic stroke were assessed with a battery of impairment and functional measures within the first week and at 90 days after stroke. Impairment and functional outcomes were examined in relation to 90-day mRS scores. Clinically meaningful changes in motor impairment, activities of daily living, and mobility were examined in relation to 90-day mRS score. RESULTS: In this cohort of 73 patients with stroke, impairment and functional outcomes were associated with 90-day mRS scores but showed substantial variability within individual mRS levels: within mRS level 2, upper extremity impairment ranged from near hemiplegia (with an upper extremity Fugl-Meyer score 8) to no deficits (upper extremity Fugl-Meyer score 66). Overall, there were few differences in impairment and functional outcomes between adjacent mRS levels. While some outcome measures were significantly different between mRS levels 3 and 4 (Nine-Hole Peg, Leg Motor, gait velocity, Timed Up and Go, NIH Stroke Scale, and Barthel Index), none of the outcome measures differed between mRS levels 1 and 2. Fugl-Meyer and grip strength were not different between any adjacent mRS levels. A substantial number of patients experienced clinically meaningful changes in impairment and function in the first 90 days after stroke but did not achieve good mRS outcome (mRS score ≤ 2). DISCUSSION: The mRS broadly relates to domain-specific outcomes after stroke, confirming its established value in stroke trials, but it does not precisely distinguish differences in impairment and function, nor does it sufficiently capture meaningful clinical changes across impairment, activities of daily living status, and mobility. These findings underscore the potential utility of incorporating detailed phenotypic measures along with the mRS in future stroke trials.


Subject(s)
Stroke Rehabilitation , Stroke , Activities of Daily Living , Humans , Phenotype , Recovery of Function , Stroke/complications , Upper Extremity
SELECTION OF CITATIONS
SEARCH DETAIL
...